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[: Exascale Architectures

e Then, now and beyond
e From fast, hot ...
e To parallel, cooler

eTo billion-way parallel,
heterogeneous, unreliable
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Acceleration & Power for fit —
some (but not all) apps % Sig
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Importance of Network Power

e Network power will
Increase in importance
—As high as 60-70%

system
— DVFS and link throttling
options to save energy

e Needs algorithm
/software redesign




Process Variability

eManufacturing is imperfect
eDie for 4 chips@ 16 cores
eTop fast, high leak
eBottom slow, low leak
e\/ariations within chip
eReorganize computations to
model variations
eSchedule and load balance
for performance and energy
eAlgorithms/software will have

to model these variatio 25,
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Failures & Soft-Errors

eComponents will fail in 100 core chips

eNot cost effective to throw out chip

eUse cores in diminished capacity

eExample: failure of one functional unit

eDisable core if unusable

oSoft errors (bit flips) in low V regimes &
algorithm correctness

eAlgorithms/software have to be
redesigned to be adpative




Caches & Memory

»Caches not useful for applications w/o reuse or long
reuse distances

»Alternatives such as user programmable memories that
are power efficient

»Options for data-staging to mask latency
»Algorithm/software reorganization
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II: Energy-Aware Scaling

e Exploiting concurrency & managing
power for O(N) sparse graph/matrix

— Algorithms/library design for billion way
parallelism and dynamic adaptivity for
energy efficiency

e Cross node & network
e At node




Sparse/Irregular Data

-Driven Computations
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Interoperable, Sparse Data Structures and

Transformations
Discretizing ! ' -
with adaptive .
meshes e .
Sparse matrices,
automatically ordered to
i reveal hierarchical
Graphs, petworks, . 8 structure
clusters in low
dimensional space _
e Sparse structures enable linear
e - Scaling of computational cost

with problem size, parallelism,..

| Application requirements->

algorithm selection + tuning

| -> H/W, S/W adaptivity
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Partition and Map to MPP Nodes
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Cross Node Scaling

Grow problem size with number of
| nodes for weak (iso-efficient) scaling




Torus Network: Managing Power
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Network Energy & Weak Scaling

—r

Energy relative to CPU & LINK ALWAYS ON

pa—
o

o
oo
T

o
(o]
T

o
~
T

o
no
T

FFT

Low Power Processor - FFT - Weak Scaling

O NET LINK ON AS NEEDED
O CPU ON AS NEEDED
x CPU & LINK ON AS NEEDED

"0 000000000000000

gQg

1 1 1 1 1 | J

> 4 A 8 10 12 14 16
Number of nodes 5 (2"

Mat-Vec

—

Energy relative to CPU & LINK ALWAYS ON

Low Power Processor - SMVM - Weak Scaling

—
N

O NET LINK ON AS NEEDED
O CPU ON AS NEEDED
X CPU & LINK ON AS NEEDED

o
oo
T

o
D
T

o
SN
T

o
NN
T

- 00000000000 00O0O00O0

1 L 1 1 1 1 J

2 4 A R 10 12 14 16
Number of nodes (2%

3
.
'l — f unuuv LIONS



Link Shutdown in Collective

Downtime (%)

eMany links remain
Reduce Operation, 512 node torus unused. For

: , ; reduce, it's 66%
Link Shutdown Opportunity vs. Timer

65%-100% Scale

—+— 64 nodes —8— 128 nodes —&— 256 nodes —=— 512 nodes OImplement simple
link shutdown (LS)
hardware in the
net

100%
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o eLibrary code X LS
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II: Energy-Aware Algorithms

— Node:
e Scheduling for energy and reliability




At Node Efficiency

— Fixed problem energy & performance efficiency at a
node is key

— Critical path scheduling for performance, energy
— Model core variations for load balance
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Measuring Energy Efficiency

Same code on two different systems A and B
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Energy-Aware Adaptation to Failures

Program Execution

16 threads on 16 cores 2 = 2 threads on ? cores
@maximum frequency I @ ? frequency

2 cores go down

Scenarios

1. Change number of cores
2. Change number of cores and number of threads

3. Change number of cores, number of threads, and voltage/frequency
levels

Mechanism
Helper thread + dynamic scheduling
Function-based adaptivity




Resiliency Issues in Multicore
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EDP Landscape for Multigrid

Number of Cores
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II: Energy-Aware Algorithms

— Node:
e Data staging and user-programmable memories




Data Staging in Multicores

o Efficiency: performance, power

y<AX
Data when and Power when and where
1 where it enables useful
N\ || itcan be computed activity (power locality)
RCM upon (data locality)

o Efficiency: Fraction relative to DGEMM for sparse matrix
vector multiplication (SMV)

e SMV varietals: CSR format: RCM, RND

I RCM enhances locality in x ... Toledo, Yelick..
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Temperature Evolution (4-core)
DGEMM, SMV_RCM, SMV_RND
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Temperature Evolution (4-core)
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DGEMM, SMV Profiles
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Scratch Pad Memory
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Summary

e Algorithm/software redesign needed for sparse/irregular
data-driven kernels

— Multi-level parallelism—ILP to Multi-node
— Controlling network energy dynamically

— At node scheduling for performance, power, h/w
variations

— Software control of data-staging
— Reliability/correctness in soft-error regimes

e APIs/Abstractions/Languages for revealing/exploiting S
/W & H/W features for cross-layer optimizations

e System support for state modeling and recovery
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